
Django Mail Builder Documentation
Release 0.3

Curtis Maloney

March 07, 2016

Contents

1 Overview 3
1.1 The Arguments . 3

2 Templates 5
2.1 Blocks . 5

3 Reference 7

4 Quick Start 9

5 Indices and tables 11

Python Module Index 13

i

ii

Django Mail Builder Documentation, Release 0.3

Build email messages from templates.

Contents:

Contents 1

Django Mail Builder Documentation, Release 0.3

2 Contents

CHAPTER 1

Overview

The EmailMessage (https://docs.djangoproject.com/en/1.9/topics/email/#the-emailmessage-class)
class in Django accepts a number of arguments, and when you’re sending emails from your app, you need to supply
them. Sometimes this is simple, as the values are fixed (i.e. from_email), whilst others are more dynamic (such as the
message body).

One way or another you need to produce these values and pass them to the class.

And sometimes you want EmailMultipartMessage instead, for instane when you want to send plain text _and_
html.

The build_message function helps you do this by letting you pass arguments, as well as use blocks from a template
to render others.

1.1 The Arguments

As shown in the Django docs, the EmailMessage class takes the following arguments:

• subject

• body

• from_email

• to

• bcc

• connection

• attachments

• headers

• cc

• reply_to

The build_message function will accept and and all of them as keyword arguments, but will also try to render any
blocks with those names from the provided template and update the values from there.

Any mix of keyword and template supplied arguments is valid, as long as there are enough to satisfy the
EmailMessage class.

The unsent message instance is returned, so you can update fields, override them, add attachments or headers, or
anything else you like before sending.

3

Django Mail Builder Documentation, Release 0.3

4 Chapter 1. Overview

CHAPTER 2

Templates

Templates are used to supply blocks, which are rendered to provide values to be passed to the EmailMessage
constructor.

2.1 Blocks

The following blocks are used:

• subject

• from_email

• body

• html

• to

• cc

• bcc

• reply_to

For the meaning of these fields (except html), see the EmailMessage docs.

All values are stripped, and the email address fields (to, cc, bcc, and reply_to) are split on newlines into a list, then
stripped.

5

Django Mail Builder Documentation, Release 0.3

6 Chapter 2. Templates

CHAPTER 3

Reference

mail_builder.build_message(template_names, extra_context=None, force_multipart=False, **de-
faults)

Constructs a EmailMessage using the template to provide arguments.

Parameters

• template_names (sequence) – A list of template names to pass to
select_template. If a single string is passed, it will be wrapped in a list

• extra_context (dict) – Extra context to pass to the template blocks.

• force_multipart (bool) – Ensure a EmailMultipartMessage is built, even
when no hmtl content is provided.

• defaults (varied) – All extra arguments will be passed to the EmailMessage

Returns EmailMessage instance.

class mail_builder.views.EmailFormMixin
A mixin intended for FormView which renders and sends an email on form valid.

email_template
The value to pass as email_templates to build_message

fail_silently
(Default: True)

Passed to EmailMessage.send

email_kwargs
(Default: {})

Arguments to pass when calling build_message

get_email_context(form, **kwargs)
Hook to build the context to be used when rendering email template blocks. The default implementation
will return kwargs, after setting ‘form’ to the form’s cleaned_data, if it’s not set.

get_email_kwargs(form, **kwargs)
Builds the dict of keyword arguments to pass to build_message.

The default implementation updates kwargs from self.email_kwargs.

form_valid(form)
Calls self.get_email_context and self.get_email_kwargs, then builds a message using build_message. Then
calls send(fail_silently=self.fail_silently) on the message. Finally calls the super-
class’s form_valid method.

7

Django Mail Builder Documentation, Release 0.3

8 Chapter 3. Reference

CHAPTER 4

Quick Start

1. Install the package

$ pip install django-mail-builder

2. Write a template

{% block subject %}Thanks for signing up to Awesome Site!{% endblock %}
{% block to %}{{ user.email }}{% endblock %}
{% block body %}
Thanks for joining our site!

We hope you love how awesome it is!
{% endblock %}
{% block html %}
<h1> Thanks for joining our site! </h1>

<p> We hope you love how awesome it is!
{% endblock %}

3. In your view, build the message and send it.

msg = build_message('email/welcome.email', {'user': request.user})
msg.send()

9

Django Mail Builder Documentation, Release 0.3

10 Chapter 4. Quick Start

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

Django Mail Builder Documentation, Release 0.3

12 Chapter 5. Indices and tables

Python Module Index

m
mail_builder, 7
mail_builder.views, 7

13

Django Mail Builder Documentation, Release 0.3

14 Python Module Index

Index

B
build_message() (in module mail_builder), 7

E
email_kwargs (mail_builder.views.EmailFormMixin at-

tribute), 7
email_template (mail_builder.views.EmailFormMixin at-

tribute), 7
EmailFormMixin (class in mail_builder.views), 7

F
fail_silently (mail_builder.views.EmailFormMixin

attribute), 7
form_valid() (mail_builder.views.EmailFormMixin

method), 7

G
get_email_context() (mail_builder.views.EmailFormMixin

method), 7
get_email_kwargs() (mail_builder.views.EmailFormMixin

method), 7

M
mail_builder (module), 7
mail_builder.views (module), 7

15

	Overview
	The Arguments

	Templates
	Blocks

	Reference
	Quick Start
	Indices and tables
	Python Module Index

